If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41x^2+100x-3500=0
a = 41; b = 100; c = -3500;
Δ = b2-4ac
Δ = 1002-4·41·(-3500)
Δ = 584000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{584000}=\sqrt{1600*365}=\sqrt{1600}*\sqrt{365}=40\sqrt{365}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-40\sqrt{365}}{2*41}=\frac{-100-40\sqrt{365}}{82} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+40\sqrt{365}}{2*41}=\frac{-100+40\sqrt{365}}{82} $
| 1=4.5-2p+10/3*p | | 144=-12x+24 | | 0.75(x+20)=2+0.5(x−2) | | 63=6.50p17.50 | | (9x+3)=(7x+1) | | 2x-30+70=180 | | A+b=238 | | x+1=3+9 | | .6=18x+10 | | 7x+49=14x+5 | | 16t-6+8=16t+2 | | 2x+11=6x+35 | | 0.25(2x-4)=5 | | 4(2x-7)^6-28(2x-7)^3+49=0 | | 1/8x*16/3=18 | | -t^2-16t-64=0 | | 8x+25=12x | | 5x4=80 | | 0.5(6x+12)=1.4-(x+2) | | -9-4x+5x=3 | | a+a+a+a=52 | | -5(x-1)=-40 | | u−6=3 | | 6x+9=12+5x | | (6x-12)^2/3=108 | | (7x-33)÷3=40 | | 4x2-2x-132=0 | | 2+y/2=-2 | | 7x-4x-8=5 | | 27=n+6+3n | | 3x+3(x+3)=-39 | | 20p=2p+90 |